Regulation of Gene Expression Programs during Arabidopsis Seed Development: Roles of the AB13 Locus and of Endogenous Abscisic Acid

نویسندگان

  • François Parcy
  • Christiane Valon
  • Monique Raynal
  • Pascale Gaubier-Comella
  • Michel Delseny
چکیده

The accumulation kinetics of 18 mRNAs were characterized during Arabidopsis silique development. These marker mRNAs could be grouped in distinct classes according to their coordinate temporal expression in the wild type and provided a basis for further characteriration of the corresponding regulatory pathways. The abscisic acid (ABA)-insensitive abi3-4 mutation modified the expression pattern of several but not all members of each of these wild-type temporal mRNA classes. This indicates that the A613 protein directly participates in the regulation of several developmental programs and that multiple regulatory pathways can lead to the simultaneous expression of distinct mRNA markers. The A613 gene is specifically expressed in seed, but ectopic expression of A613 conferred the ability to accumulate several seed-specific mRNA markers in response to ABA in transgenic plantlets. This suggested that expression of these marker mRNAs might be contmlled by an AB13dependent and AEA-dependent pathway(s) in seed. However, characterization of the ABA-biosynthetic aba mutant revealed that the accumulation of these mRNAs is not correlated to the ABA content of seed. A possible means of regulating gene expression by developmental variations in ABA sensitivity is apparently not attributable to variations in AB13 cellular abundance. The total content of A613 protein per seed markedly increased at certain developmental stages, but this augmentation appears to result primarily from the simultaneous multiplication of embryonic cells. Our current findings are discussed in relation to their general implications for the mechanisms controlling gene expression programs in seed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid.

The accumulation kinetics of 18 mRNAs were characterized during Arabidopsis silique development. These marker mRNAs could be grouped in distinct classes according to their coordinate temporal expression in the wild type and provided a basis for further characterization of the corresponding regulatory pathways. The abscisic acid (ABA)-insensitive abi3-4 mutation modified the expression pattern o...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy.

Nitrate releases seed dormancy in Arabidopsis (Arabidopsis thaliana) Columbia accession seeds in part by reducing abscisic acid (ABA) levels. Nitrate led to lower levels of ABA in imbibed seeds when included in the germination medium (exogenous nitrate). Nitrate also reduced ABA levels in dry seeds when provided to the mother plant during seed development (endogenous nitrate). Transcript profil...

متن کامل

The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development.

Seed germination is controlled by environmental signals, including light and endogenous phytohormones. Abscisic acid (ABA) inhibits, whereas gibberellin promotes, germination and early seedling development, respectively. Here, we report that ZFP3, a nuclear C2H2 zinc finger protein, acts as a negative regulator of ABA suppression of seed germination in Arabidopsis (Arabidopsis thaliana). Accord...

متن کامل

Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis.

The EMBRYONIC FLOWER (EMF) genes are required to maintain vegetative development in Arabidopsis (Arabidopsis thaliana). Loss-of-function emf mutants skip the vegetative phase, flower upon germination, and display pleiotropic phenotypes. EMF1 encodes a putative transcriptional regulator, while EMF2 encodes a Polycomb group (PcG) protein. PcG proteins form protein complexes that maintain gene sil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002